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This article examines the motion of a crack along the line joining two different 
elastic half-planes under the influence of variable shear stresses. Analogous to 
the case of a homogeneous medium [1-3], the law of motion of the edge is assumed 
to be known. Among the features of the physical situation being examined are the 
nonsymmetrical character of the solution with a symmetrical load distribution and 
the dependence of the number of Rayleigh wave which can be generated (two, one, 
none) on the ratios of the elastic parameters. The problem decomposes in the 
image space into a scalar problem of conjugating two functions reflecting the con- 
nection between the displacement discontinuity on the crack and the shear stress 
on the crack extension. The formula must then be inverted to represent the normal 
stress. The solution is constructed by the method of factorization, which was used 
in [2, 3] for a problem with a movable separation point for the boundary condi- 
tions. The properties of the Rayleigh boundary function for contacting elastic 
bodies are also studied. It is shown that the H~ider continuity condition for the 
input functions is sufficient to determine the asymptotes at the edge of the crack, 
analogous to the case of steady crack movement [4]. With transformations of the 
convolutions, we used the methods of contour integration and applied the residue 
theorem. This made it possible to somewhat simplify the results [2]. The subject 
of crack starting is addressed inan examination of special types of loading. The 
solution of a similarity problem was given in [5]. 

i. Formulation and General Solution of the Problem. A semi-infinite notch (transverse 
shear cr~ck) is located on the rectilinear boundary between two elastic planes. Beginning 
at the moment of time t = 0, the edge of the notch moves in accordance with the law x~ = 
s s ~ 0 [s = ds s = L]. The contacting edges of the notch offer no resistance 
to shear; conditions of complete contact are satisfied at x I ~ s x 2 = 0 (x~ and x 2 con- 
stitute a Cartesian coordinate system). 

We will examine the external dynamic stress and displacement fields, which exist (and 
are known) as the solution of the corresponding plane problem without a crack. The additional 
stress field Okm(X I, x2, t) and displacement field Uk(Xl, x2, t) which develop as a result of 
diffraction must satisfy the dynamic equations of the linear theory of elasticity (x 2 ~ 0) 
and the following boundary conditions (x 2 = 0, x ~ xl): 

~1~ = ~_(x ,  t ) ,  [~12] = [~2~1 = [u2l  = O, x < l~ 

[~1~1 = [~221 = [ u l l  == [u21 = O, x > l,; ( 1 . 1 )  
_ e  I - -  1 / 4  

( k , m  = 1, 2).  

Here, the square brackets denote a discontinuity of a quantity in the transition across the 
interface between the elastic planes; W is the flow of energy to the edge of the notch; C o > 
0 is a constant. 

We adopt zero initial conditions. We also assume that continuity of the displacement 
u 2 at x < s x = 0 (i.e., the condition of non-negativity of the contact pressure) can be 
assured by adding the static uniform stress state to the solution as a whole. 

The above-formulated initial-boundary-value problem for linear hyperbolic equations can 
be examined in different classes of input functions up to distributions (fundamental solu- 
tions). The uniqueness of the solution for smooth functions ~_, s can be demonstrated 
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similarly to [6, 7]. Here, the requirement of non-negativity of the energy flow W is im- 
portant. 

We will use capital letters to designate Fourier transformation with respect to x and 
Laplace transformation with respect to t with the parameters q and s. Proceeding on the 
basis of the relations between the images of the displacements and stresses on the boundary 
of the elastic half-plane [3] and taking conditions (i,i) into consideration, we exclude 
U(q, s) and E(q, s) [the images of the functions o(x, t) = o22(x, 0, t) and u(x, t) = u2(x, 
0, t)] and we obtain a problem of conjugation of the functions F-(q, s) and T+(q, s) - the 
images of the discontinuity of the displacements f_ = [ul] on the notch and the shear stresses 
on the notch continuation ~+ = ol2(x, 0, t)H(x - s 

F .  = G(T+ + T_), 

S ( i t )  = ( ~  - -  i )2  ~11~12~21~22 + ( ~ 1  - -  ~2) 2 - -  ~11~21 ( ~  - -  62) 2 - -  ( 1 . 2  ) 

- ~ , ~  ( i  - ~ ) ~  - ~ ( l  - ~1) ( t  - g~) (g~,g~ + ~ , ) ,  

~ (~D = g ~  - ~], ~ = 1 / ~  + ( ~ ) - ~ ,  2 ~  = ~ + ~ ,  

- -  q/s,  ~ = ~ / ~  (~_(x, t) = O, x > l).  

Here, H(x) is the Heaviside function; Uj are shear moduli; clj and c2j are the velocities of 
the rarefaction and shear waves; the index j = i, 2 denotes media 1 and 2 occupying the half- 
planes x 2 > 0 and x 2 < 0. 

After we solve problem (1.2), we determine the stress o and the displacement u by in- 
version of Eqs. (1.3): 

E = iqDF_/S, U = ~EF_/S, 

D(i~) : 2!h[(~n~21 -- ~1)R2 -- (~12~22- ~2)~1], (1.3) 

s = ~(gl~(~ - ~)(~1~ - g~) + g1~(I - ~1)(~i~g~ - ~)l. 

We make the radicals ~hj=~-IV~2+ck]~ uniform by making notches ]-- ~,--~c~*] U [ic~ I, ~[ in 

the ~-plane and assuming V~ z+ ch~ 2 = c ~  1 at $ = 0. 

We will limit ourselves to searching for (and analyzing) the functions ~+, f_, o, and 
u, the images of which satisfy Eqs. (1.2) and (1.3). When the transforms permit, they are 
equivalent to all of the conditions (i.i) except for the energy condition. The last estimate 
in (I.I) is taken into consideration during the construction of the solution [1-3]. 

Let us attempt to find a representation of the coefficient of problem (1.2) in the form 

G = G+G_, P• = t/G• ( 1 . 4 )  

with the condition that the originals of the functions G+, P+ vanish at x < vlt and the orig, 
inals of the functions G_, P_ vanish at x > v2t (v 2 < s < v l) [2]. First we study the 
character and location of singular points of the functions G and G -i We introduce the no- 
tation 

a min --1 C~I, cR mincRj, c~ cnj, = c l j , b = m a x  = * =max j = t ,  2, 

where CRj a r e  un ique  p o s i t i v e  r o o t s  o f  t h e  Ray le igh  e q u a t i o n s  Rj (v  -1)  = 0. 

The following were proven in [8]: i) with small real values of v = (i~) -I, the function 
S(v -i) < 0. If S(b) ~ 0, then there exist simple (unique in the plane $) zeros of this func I 
tion v = is, 0 < c S J b -l being the velocities of Strouhal boundary waves propagating along 
the line of contact of dissimilar elastic media; 2) if S(b) < 0, then the function S(i$) has 
no zeros in the complex (cut) plane $. 

The presence of real zeros for the function P(i$) indicates the existence of Rayleigh 
boundary waves propagating along the line of contact of different elastic media with slip 
[9]. Using the argument principle [i0], we can augment [8,9] by proving thefollowing: 3)with 
small real values v of the function P(v -l) > 0 and if P(b) J 0, then there are simple (and 
unique) zeros v = • of this function. Here, the value of cp lies within the interval c R < 
cp < c~ if c~ J b -~ and in the half-interval c R < cp i b-1 if c~ > b-~; 4) with the condition 
P(b) > 0, this function has no zeros in the plane ~; 5) at cll= cl2, it vanishes (order of 
i/2) at the limit at branch points v =icll ; 6) if there exists a zero c$(S(b) ~ 0), then 
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there exists a zero cp. Meanwhile, cp < cs J b -I (case I). If S(b) < 0, i.e., if there is 
no Strouhal boundary wave, then there is a region in the space of allowable elastic parameters 
of media i and 2 where P(b) < 0 (case 2). Finally, in the region of elastic parameters 
where the inequality P(b) > O is satisfied, S(b) < 0, i.e., neither type of boundary wave is 
present (case 3). 

It should be noted that if c~ ~ b -l (transverse waves of similar velocity in the medium), 
the zero cp always exists. It can be absent only when b -l < c~, i.e., for the case of mate- 
rials with substantially different properties - such as when one medium is rigid [9]. 

Let us determine the zeros, poles, and branch point $ = ~ of the function G by repre- 
senting it in the form of a product 

G =AGoG,, G1 = G/(AGo), ( 1.5 ) 

A = - -  (3 - -  4v~ + ~1 (3~ + 1 - -  4~v~)/(t  - -  ~ + ~ - -  ~ )  

( v j  a r e  t h e  P o i s s o n ' s  r a t i o s ) .  

I n  a c c o r d a n c e  w i t h  t h e o r e m  (6 )  a b o v e ,  we c h o o s e  t h e  f o l l o w i n g  in  c a s e s  1-3 

h~ + ~ .-i ~r~+ ~ _~ 
Go = Go = s-1 Go = 

d~+~ ~ V ~ '  d'+~ ~ ' V ~ ' - % - W  (1.6)  

h = c~ ~, d = c~  ~, 

Each s u b s e q u e n t  c a s e  in  ( 1 . 5 )  i s  o b t a i n e d  f rom t h e  p r e c e d i n g  c a s e  by means o f  t h e  t r a n -  
s i t i o n s :  h + b (1 + 1 ) ,  d +b (2 ~ 3 ) .  T h i s  t h e o r e m  r e m a i n s  v a l i d  in  r e l a t i o n  t o  t h e  s o l u t i o n  
o f  t h e  p r o b l e m  as  w e l l  ( d i r e c t  p r o o f ) .  Thus ,  a l l  o f  t h e  d i s c u s s i o n s  be low w i l l  be c o n d u c t e d  
f o r  t h e  mos t  g e n e r a l  c a s e  1, when b o t h  o f  t h e  a b o v e - m e n t i o n e d  R a y l e i g h  b o u n d a r y  waves  a r e  
p r e s e n t .  The m a t h e m a t i c a l  t r a n s i t i o n  1 + 3 i s  a c c o m p a n i e d  by a r e d u c t i o n  in  t h e  number  o f  
p o l e s  o f  t h e  f u n c t i o n  G O o r  G~ ~. 

The f u n c t i o n  G ~ ( i ~ )  which  r e m a i n s  a f t e r  i s o l a t i o n  o f  t h e  s i n g u l a r i t i e s  i s  r e g u l a r  i n  
t h e  p l a n e  w i t h  c u t s  [ •  •  a l o n g  t h e  i m a g i n a r y  a x i s  G~ = 1 + O(~ - 2 )  a t  ~ + ~.  Thus ,  t h e  
f u n c t i o n  G~ can  be f a c t o r e d  in  a c c o r d a n c e  w i t h  t h e  r u l e  [3] 

i ' - O ~ = ~ + ( ~ ) ~ _ ( ~ ) ,  ~• = ~xp ~ ~ j ,  

~(a) = - -a rg  Ga(--a + CO), a ~< a ~< b, 

h2 "l- ~2 AP (i~) + ~;) R1 ~4 (homogeneous medium) 

4(1 '--Vl)( ~' ) 

(1 .7 )  

The function ~+(i~)~---~(i~) = ~_(--i~) is analytic in the plane ~ with the notch [-ib, -ia]. 
The carriers of the originals of the functions ~• are concentrated in the regions t/b~x~t/a 
and --t~x<~--t/b, ~• at ~ + ~. 

The function ~(=) is determined by different expressions, depending on the relative lo- 
cation of the velocities Ckj, and itcoincides with the analogous function for a homogeneous 
media [2, 3], 

V --*- arcsin (s/b), vl "~ 
~4 

(~) = a , c t~  (b ~ -  ~ )  @ - ~7~) 
1/2 

f o r  a r i g i d  medium 2. I n  g e n e r a l ,  t h e  f u n c t i o n  h a s  d i s c o n t i n u o u s  d e r i v a t i v e s  ( a  < a < b ) .  
I t  a c c o u n t s  f o r  r e f r a c t i o n  o f  l o n g i t u d i n a l  and t r a n s v e r s e  waves  a t  t h e  i n t e r f a c e  and g e n e r -  
a t e s  numerous  s u r f a c e s  o f  d i s c o n t i n u i t y  in  t h e  s o l u t i o n .  These  s u r f a c e s  a r e  wave f r o n t s  
f rom t h e  p o i n t  s o u r c e .  However ,  b e i n g  c o n v o l u t e d  w i t h  a smooth  l o a d ,  t h e y  g i v e  a smooth  
solution. We will not analyze the wave pattern here (it is very complex). To facilitate the 
derivation of specific expressions for T(~), we will note only that the quantities e~kj > O, 
iSkjSmn > 0 on the right (left) side of the cuts in the upper (lower) half-planes $ = 6' + 
ia; on the opposite sides of the cuts, they take values with the opposite signs. 

906 



The function z(i~) may have root singularities. This is related to the fact that in the 
general case the ratio S/P does not contain a radical as the multiplier (or divisor), and 
we take an arbitrary radical in removing the branching in (1.6) (this radical does not gen- 
erate singularities of the functions ~,~-I only for a homogeneous medium). Using another 
radical, such as /a 2 + ~2 we obtain the following as a result of another function 

• I ~-~--~ l • (a) ( Ima  0), ( 1 . 8 )  

The arbitrariness in the method 
of the solution, but (1.8) and (1.9) 
tion q~(~) and the Cauchy integral in 

for a homogeneous plane 
~ ( ~ )  - -  

of eliminate branching does not affect the construction 
will be considered in the analysis. Study of the func- 
(1.7) leads to the following results: 

O, • •  0 (c~ = a, b), 

for rigid medium 2 in the sense c~21Ul/(c~iui) § 0 or ctl = c~2 

r  = n/2, x0(a), Xo l (a )=~O (a = a,. b), ( 1 . 9 )  

while in the remaining variants (• [b- a[-~/~'• 

(a) = O, ~/2, ~i (~z), •  (~) =/= 0 (= -- a, b), 

We will limit ourselves to the solution of the problem in the velocity range 0 ~ l'< c v 
(cases i and 2) and 0~. l'<b -I (case 3). Taking into account (1.5)-(1.7), we determine the 
functions G+_ with the equality 

G~_ = s -1/'~ h u i~ •177 (i~) 
~ u  ~~Vb ~ i~" ( 1 . 1 0 )  

I t  f o l l o w s  from t h e  f o r m u l a s  f o r  t h e  o r i g i n a l s  p r e s e n t e d  be low t h a t  t h e r e  i s  a s o l u t i o n  t o  
t h e  f a c t o r i z a t i o n  p r o b l e m  ( 1 . 4 ) .  

We r e d u c e  t h e  o r i g i n a l  g+(x ,  t )  t o  t h e  f o l l o w i n g  form by u s i n g  f o r m u l a s  f o r  i n v e r s i o n  o f  
t r a n s f o r m s  of  t h e  form f l ( s ) f i ( q / s )  [3] and t h e  r u l e  f o r  d i f f e r e n t i a t i o n  of  c o n v o l u t i o n s  o f  
generalized functions [ ii ] 

g + - ~ - I / ~  ~ O(v) H ( b - - v ) d v + H  --b. O(v) dv 
b 

All of the above operations are regarded as operations on generalized functions coinciding 
with the normal operations if the functions coincide with the normal functions; in particular, 
the values of the singular integral coincide with its principal value if the density is con- 
tinuous in accordance with the Hblder condition [ii]; by integration within the range from 
~i to ~2, we mean integration from ~i - 0 to ~2 + 0. 

Equation (I.Ii) is derived by means of the residue theorem. Since we will make repeated 
use of this method of isolating singularities of an integrand function and calculating in- 
tegrals, we will examine its application in more detail. We will find the limiting value of 
the contour integral C = C R + C V in the plane Z = t/z, z = x + iy (Fig. I) at R + = (C R is a 
circle of large radius R with a fixed center) from the auxiliary function 

h - - Z  •  N i 
Qo (Z)  = d - -  Z V [  Z _ b)(Z - -  t/,x) ~" for Z - *  oo (uniform). 

We have 

• • = e +-i~(~) • a < v < b, • ~) = • v ~ [a, b], 

]/r(Z+- - -  b ) (Z  +- - -  t / x )  = ~ i V "  (v - -  b ) ( t / x  - -  v), 

b < v < t / x ,  Z ~ = v 4-  iO, Qo(Z +) Q o ( Z - )  ~ 2 iQ(v ;  t./x), 
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r =  .r + .F ,,.+=> ~=, + ~, ,f . <~ ~> <,,,: ~,<, ~.<<, ~ ' -  ~>'< <"> _ ~, <~, _ ,~.> - (< , -  ~) .  
C O R C v a 

The last equality was used in deriving (i. Ii). We similarly obtain the formula for the orig- 
inal 

l 7 v (o.. , o . )  , / - . , . . ~ , < , = _ , >  . ,  .,n<,<,> ~--~ 
P + =  ~ + - / - ~ p 0 - ?  1 - -  v ~ - -~-  x -~(-~) I I ( t - - b x ) - - - g a  ~(v)(h--v)  ~ d v H  b - -  ~ 

The f o r m u l a s  f o r  t h e  o r i g i n a l s  g_ and p_ a r e  o b t a i n e d  f rom t h e  e x p r e s s i o n s  f o r  g+ and 
p+ by r e p l a c i n g  x by - x .  We d e v e l o p  t h e  c o n v o l u t i o n :  

~(z, t) = g+** ~_ = ]1 + J,. + ]3, 

y_ (g, t - bx + bg) 
J1 dg,; ~-,I~ J ~ ~" " 

s ,  = - Ao ~ / ~ -  ~ dr dt  = - -  Ao [ (~d - -  t) - ' /"  [ ~" (x - -  ~ + ~1~, ~) dr d~, 
x--lib ~d rid 0 

Ao - (d"  h) x, (d) t - -  b~ ( 1 . 1 2 )  
1 / ~  ' t ~  x + b~' t~ i - - b / d '  

~ t 

J3 ~ v ~ v  I g 7  - x - -  -~, t - -  % d'~ dv, 

V 

t [ , Oz 
F o =, ~ - ,  Q (y; v) dyIS (b - -  u) H (v - -  a), T'- ([, g) - ~  (i, g) 

a 

( t h e  symbol  ~* d e n o t e s  c o n v o l u t i o n  w i t h  r e s p e c t  t o  t h e  v a r i a b l e s  t ,  x ) .  

Since we realized factorization (1.4), the solution of the problem takes the form [2, 3] 

T+ = - - p +  * * [ , H ( x  " l)], [_ ~Ag_* * h p H ( l  - -  x ) ] ,  

(~ = & ** hpH(l - -  x)], u = u ~ ** [~H(I ~ x)], ( 1 . 1 3 )  
�9 Om o DG iAEG 

= W 0 - U 0 =  _ _ _ =  o ~ - -  A az ' = ~ ': S 

B e f o r e  i n v e r t i n g  t h e  f u n c t i o n  W ~ we n o t e  t h a t  D =- 0 ,  c = 0 f o r  a homogeneous  p l a n e .  
I n  a c c o r d a n c e  w i t h  t h e  i n v e r s i o n  f o r m u l a s  in  [ 3 ] ,  we h a v e  

0 iD o(Z)  h + z  x _ ( Z )  t+ 112 
w ~  lira [ W ,  (z, t)  - -  W t  ([,  t)], Wt---- at 2t~z d + Z b ~ "  V ~  

Y ' * + 0  

where  t h e  symbo l  * d e n o t e s  c o n v o l u t i o n  w i t h  r e s p e c t  t o  t h e  v a r i a b l e  t ;  t ~  i s  a g e n e r a l i z e d  
f u n c t i o n  [ 1 1 ] .  The r a d i c a l s  Bkj e n t e r  i n t o  t h e  r a t i o  D/S = D o o n l y  in  t h e  f o r m  o f  t h e  p r o d -  
u c t s  BkjBmn, i.e., 

DO "~ ~o(v) • i~F(v), Z --)- Z + = x -4- iO, a < v = t lx  < b, 

Do -~  ~0(v) ~= i ~ ( v ) ,  Z - +  Z +, - - b  < v < - - a .  

H e r e ,  ~ ( v )  = T ( - v )  and ~ 0 ( v )  a r e  r e a l  f u n c t i o n s  which  can  be  c a l c u l a t e d  f r o m  d e f i n i t i o n s  
( 1 . 2 )  and ( 1 . 3 ) ,  and t h e  f u n c t i o n  D0(Z) i s  c o n t i n u o u s  in  t h e  t r a n s i t i o n  a c r o s s  t h e  r e a l  a x i s  
i n  t h e  Z p l a n e  a t  t h e  r e m a i n i n g  p o i n t s .  The f u n c t i o n  G(Z) i s  b r o k e n  up on t h e  c u t  - b  < v <_ 
- a  [due  t o  u(Z))] and on t h e  c u t  v < - b  (due  t o  r  + Z) .  As a r e s u l t  o f  t h e  c a l c u l a t i o n s  we 
o b t a i n  

Aoxa.__.__t.]/___._~o ~ 1 . F~(v)dv t ~ _ _ A ~ t [ w l H ( x ) + w ~ H ( _ x ) ]  ~ o0=  + F, - 7  
0 

H ( - ~  - ,) ] u_ (v), , ,+ , , r  ,(o) ,.,, r H ( - ~ - ~ ) s S @ + v )  +~-~  F, (v)= ~ [~..tv -- a)/~ (~ -- v) + 

F~,(v)  - -  " 2hu_ (h) D (h) H (v -- h) " 
Vb"+ h(d + h) S ' (h)Vb '~ 'F  (I) = ~F 0 (v) sin (p (v) - -  ~F (~) cos ~ (v). 
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The stress a can be represented in the form of the sum 

a = o+H(x -- l) + a,H(l -- x), 
~/a 

0 ~ , 

0 

l a-=~+ + A ~ - ~  w ~ ( x , ~ ) r  t - - x ) d g d ~ ,  
0 ~2 

(1.14) 

�9 ~1 = [ x - - l ( t =  x ) ] H [ x - - l ( t - - T ) ] ,  

~2 = - - ~ / a ) H [ ~  + l( t  - -  ~ - -  x ]  + Ix - -  l ( t  - -  ~ ) ] H ( ~  + x/a).  

The contribution to the normal stress on the continuation of the cut is given by inte- 
gration over the region lying above the curve i: g = x - s - ~), x > s while the normal 
stress on the cut is given by integration over a polygonal region in the tetrahedron ~ > 0, 
T > 0 and over a curvilinear triangle in the tetrahedron ~ < 0, ~ > 0 bounded from below by 
curve 2: ~ = x -- s -- ~), x < s and the line ~ = -~/a (Fig. 2). 

2. Asymptotes of the Functions Near the Edge of the Crack. Let us study the behavior 
of the solution at x + s at the moment of time t, when the quantities ~(x, t), Z(t) are 
functions of t and x which are continuous in accordance with the H~ider condition. For H61der 
continuity of the function ~(x, t), it is sufficient to require that the function ~_(x, t) 
have the same property throughout the domain. 

The regions of integration in the first two formulas of (1.13) are triangles localized 
near the point g = �9 = 0 and disappearing at x ~ ~. Thus, the function ~(x - ~, t - ~) is 
brought out from under the integral sign [2], and we can integrate (and differentiate) the 
function remaining under the sign by means of the residue theorem. We present the final re- 
sults: 

x+ ~ N~(x - - 1 )  -11~, x--+ l ~ 0; I_ N M ( l  - -  x) 11~, x--+ l - -  O, 

(dl" i |) V'  t _ bl ~ 2S (m) N 2 
N2 ~/~(l--hZ')•  r  t ) , i =  P(m) ~ ( 2 . 1 )  

1 = z(t ) ,  l . =  z . ( t ) ,  m = l / l . ,  

The integrals in the solution [2] are taken by the method of contour integration with the 
use of the residue theorem. The expressions for the constants A, B, k(s and D are simpli- 
fied: 

A = •  B = • k = •  D - • ( 2 . 2 )  

We u s e d  t h e  n o t a t i o n  in  [2]  i n  Eqs .  ( 2 . 2 ) .  With  a l l o w a n c e  f o r  ( 2 . 2 ) ,  t h e  a s y m p t o t e s  cp + CR, 
c S ~ b -z with the continuous convergence of the parameters of media I and 2, and the substi- 
tution a + b in the transition from a normal-rupture crack to a shear-rupture crack [3], the 
results in Parts 1 and 2 agree with the results in [2, 3]. 

It is more complicated to establish the asymptote for the function a(x, t) (the region 
of integration is not localized at x ~ s - 0). It can be shown that o + = O(i) at x ~ s + 0. 
We obtain the asymptote of the function o- on the basis of the representation (1.14). How- 
ever, it is more easily obtained from 

~d a=-- Ox o * * / - ;  (2.3) 
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do limL~---[Do(Z)--Do(Z)]} --- i a--[c;(t-l[H/b-- t ~ H ( t  a) - - H ( b + t  ) H (  " ~ ) ] }  + Doo6(t)6(x), 
~_,+o[Zm nz ot L ~ z , i  k -;1 \-~-- - -  a 

D~ = l im D O (Z) =/= O, .co, e -  ---- o f z-,| - -  ~-z d o (~, x ) / .  (x - -  ~, t - -  ~)d~ d~, 
~++~_ 

I �9 �9 > ( u t ,  o , =  ~,'~: - - ~ - ~ < ~ <  b' 

~ > ~ x - - l ( t - - x ) ,  O<~ v<~t} 

[6(t) is the Dirac delta function]. 

(2.4) 

The measure of the region of integration to_ approaches zero at ~----Ix--ll~O. However, 
here mesm+ = 0(i). We proceed as usual in the analysis of the asymptotic solutions of el- 
liptic equations at branch points of boundary conditions and points of inflection. Spe- 
cifically, we construct a section of the sector ~+ with the straight line ~ = g0 > O, where 
~0 is a sufficiently small (independent of ~) number, so that in region ~0 .= m+ N {~ ~0} 

we can replace the function f_(x - ~, t - ~) by its asymptotic expression f0 = M/~ (by virtue 
of continuity). The contribution to the general term of the asymptote is not given by in- 
tegration over the region located above the straight line ~ = ~0, while the contribution to 
11 from integration over m~0' as will be shown below, is independent of the selection of ~0 

b ~o ~o  
M 

a 0 aO  

For the functions s continuous according to the H61der condition, we have (~ > 0) 

l'(t v~) = l'(t) + o(~) ,  l(t -- ~v) -- l(t) -- l'(t)v~ 3/ 0(~'~+1), ~ . ~  ~-0. 

With the substitution ~ = eq and ~0/E + ~, it is not hard to show that 

b 

] im ]/rs-11 = M/" f~_(z,)do 
~-~o 2n J !  -- l 'v" 

We calculate the contribution to 12 from integration over the region ~_ and we calculate 
the quantity 13 - the result of convolution with the first term of (2.4): 

--a 

Ml" f ~ (v) dv i M 
G =  ~ ~ ~ ,  I , =  2 v-~D| 

--b 

The sum I l + I: can be transformed by means of the residue theorem by choosing Q0 = W0(Z) x 
(Z - m) -l and the integration contour C = C R + Cv, with the segments [-b, -a[ and [a, b] on 
the real axis. As a result, we obtain 

i i + i ~ =  M - -  2 ],/--'-~ (Do (m)  - -  n ~ ) ,  
(2.5) 

N1 D (m) t D(m) 
~ VI  _ z~ x-+ l O~ N~ = ----ff~-~ N~ = ~ -ff-(~- M. 

We also determine the strain asymptote 

a~ 0 (i), x - ~  l -- 0. a~ E(m) N z ( x - -  l)-~/~/P(m), x -+ l  + 0; "bTz 

A change in the sign of the load is accompanied by a change in the sign of the coeffi- 
cients N and M. At N l > 0, the assumption of continuity is violated (singular tensile 
�9 stresses cannot be removed by finite static stresses) - a discontinuous region is inevitably 
formed. However, in the event of substantial external compressive forces, this region will 
evidently be the only such region, and it will be small and localized near the edge of the 
crack. Then the problem can be examined approximately by the method of combinable asympto- 
tic expansions. Here, the internal problem reduces to the problem of the steady motion of a 
crack with a loaded discontinuous region at the tip, a contact section with slip about the 
edge of the crack, and an assigned asymptote at infinity (similar to the problem in [12]). 
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The results in [12] and a priori estimate of the capacity of the forces acting on the crack 
edges in the discontinuous region lead to the following important conclusion. The flow of 
energy to the edge of the crack from outside changes by an asymptotically small amount as a 
result of this capacity. The stress intensity factors obtained from the solutions of the ex- 
ternal and internal problems will have the same absolute value but opposite signs - the dis- 
continuous region functions as a switch which changes the signs of the stresses. 

3. Special Cases of Loading. Crack Starting and Growth. The integrals (1.12) are 
taken (using contour integration) for dynamic loads of the simplest type. First let ~- = 
H(t - ~0)H(s - x) - the problem of the diffraction of a stepped transverse wave on a movable 
notch (normal incidence). We find 

4 (~, t) = 4 ~ (t ~ 0 ) ~ ,  N~ = N O (t - -  ~ 0 ) T ,  

4o 2hu (0) NO 2 l"  - -  Cp U ( 0 )  

From h e r e ,  i t  i s  e a s y  t o  u se  s u p e r p o s i t i o n  t o  o b t a i n  o t h e r  r e s u l t s ,  such  as f o r  a l i n -  

2 4o ( t - - T  ~Z12 2 N O ( t _ _ ~ o ) ~  and f o r  a t r i -  early increasing load T_ = (t--%)+H(l-- x) 4 =T oJ+, N2 =y 

angular pulse T_ = [alt +- a2(t--TI)+ + (a2--al)(t--T2) +] with a rise time ~i > 0 and a total dura- 
tion �9 2 

~ = ~  [ a ~ +  - -  a2 (t - -  ~ ) ~ '  + (a= - -  a~) (t  - -  ~ ) ~ ] ,  

0 < a~ < a~, ~= = a~(a= --  a0 -L  

The maximum of the last expression occurs at the moment of time t m =  ~ 1 / [ t -  (al/a2) 2] (~1 
tm < ~2) ,  and t h e  p rob l em  of  s t a r t i n g  o f  t h e  c r a c k  can be s o l v e d  by compar ing  t h e  v a l u e  N m = 
N=(t  m) w i t h  t h e  l i m i t i n g  dynamic  s t r e s s  i n t e n s i t y  f a c t o r  d u r i n g  s t a r t i n g  N=g. 

We w i l l  examine a l o a d  o f  t h e  t y p e  ~_ = H ( x - - L - I -  v t ) H ( l - - x ) ,  moving a t  t h e  v e l o c i t y  v > 0 
ove r  a n o t c h  f rom t h e  edge .  At v > a  -~ , t h i s  models  t h e  i n c i d e n c e  o f  a p l a n e  wave a t  an a n g l e  
to the contact line with supersonic motion of the wake. We perform the calculations: 

4 = 2C ~ /  x - -  L + vt 

N2 (v ) = s ~/~( l - L + vt) ( i - az') dz" - i C _+ N2 ( ~ ), v -+ oo ~ 

h 

C = i + ] / l  + cp/u + ---:-------------~-- ~ Q (y; 0) arcsin ~ ~  _~. 
a 

A n a l y s i s  shows t h a t  N2(v)  < N : ( ~ ) .  We r e c a l l  t h a t  i t  i s  n e c e s s a r y  t o  p u t  h = b, h = 
d = b ( e a s e s  2, 3 ) ,  h = b, cp = c R (homogeneous  p l a n e )  i n  a l l  o f  t h e  e x p r e s s i o n s .  

Let us use the simplest mechanical criterion of fraction No < N2g = const [we do not know 
of any data on the function N2g(s Proceeding on the basis of-the above relations for 
N2(s it is also possible to solve the equations for s [13] and to make the following qual- 
itative conclusions (for nondecreasing loads). The crack remains stationary up to a certain 
moment of time and then accelerates (s > 0). Meanwhile, s + cp, t ~ = (cases i, 2). To 
analyze motion in case 3, it is expedient to make the substitution x(m) in accordance with 
(1.8), (1.9). We then find that the velocity s reaches the values b -l after a finite time 
(the velocity of the shear wave is not critical for crack growth in case 3). On the other 
hand, N 2 + 0, N I = O(i) at s + cp, t = const (cases i, 2), N 2 = O(i), N I = O(i) at 0 ~ s 
b, t = const (case 3) for the above dynamic loads. This appreciably distinguishes the non- 
steady motion from the steady motion. 

We will analyze the establishment of a steady-state regime using the example ~_ = 6(x - 
ct)H(t) (0 ~ c ~ s < cp). Then (x' = x - ct) 

b 

9 .V~x,(l_bc)[i--~c \v]--H b-- --([--~-7~--t Ot , ]/N(i--c~ [ . (3.1) 

At t + =, x < const + vt, v < cp, and 
L + ct, t + ~, by inserting x' = L into 
pressions for the coefficients N2, M of 

only the first term remains in (3.1). Assuming s 
(3.1) we obtain $(s t) - the multiplier in the ex- 
(2.1) determining the steady-state value N 2 = _(z~)-1. 
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For the law of motion s = L + ct, the asymptotes reach the steady-state regime after the 
shear and boundary waves from the movable point source pass the edge of the crack. 

Thus, the formally obtained solution (1.13) satisfies the zero initial conditions and 
the restriction on the energy flow [4] 

~z.~s (~) 
O~.~W= 2P(m) <co 

as well as the remaining conditions (I.i); o, T+, f_, and u are sufficiently smooth functions 
if the same is true of the input functions g', T_ (excluding the point x = s the relation- 
ship between the coefficients N and M of (2.5), extracted directly from the solution, is 
analogous to the relationship for steady motions of the notch [4] (also see the analysis of 
the angular distribution of the functions in [4]); the solution in the limiting case Ckl 
Ck2, Ul ~ U2 (k = i, 2) coincides with the solution in [2]. 

The effect of the resistance of the notch edges to movement (which may vary broadly in 
its physical character) is actually accounted for in the form of a correction to solution 
(i.13), such as by introducing a shear stress equal to T ~ = T~ t; f_, o). 

It should be noted that the study [14] obtained a criterion for the existence of a Ray- 
leigh wave for contacting elastic bodies with slip. 
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